Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Viral Immunol ; 36(2): 144-148, 2023 03.
Article in English | MEDLINE | ID: covidwho-2258312

ABSTRACT

We report an asymptomatic child with heterotaxy syndrome who had recurrent positive SARS-CoV-2 polymerase chain reaction testing. An aberrant lymphocyte population expressing CD19, CD16, and CD56 was identified; its phenotyping revealing atypical NK cells. This subset's role in protection from severe disease or in reinfection cannot be ascertained.


Subject(s)
Asymptomatic Infections , COVID-19 , Heterotaxy Syndrome , Killer Cells, Natural , Reinfection , Child , Humans , Male , COVID-19/complications , COVID-19/immunology , Heterotaxy Syndrome/complications , Killer Cells, Natural/immunology , Receptors, IgG/metabolism , Reinfection/complications , Reinfection/immunology , Antigens, CD19/metabolism , CD56 Antigen/metabolism
2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2066141

ABSTRACT

The aim of the study was to evaluate the dynamic changes of the total Natural Killer (NK) cells and different NK subpopulations according to their differentiated expression of CD16/CD56 in COVID-19 patients. Blood samples with EDTA were analyzed on day 1 (admission moment), day 5, and day 10 for the NK subtypes. At least 30,000 singlets were collected for each sample and white blood cells were gated in CD45/SSC and CD16/CD56 dot plots of fresh human blood. From the lymphocyte singlets, the NK cells subpopulations were analyzed based on the differentiated expression of surface markers and classified as follows: CD16-CD56+/++/CD16+CD56++/CD16+CD56+/CD16++CD56-. By examining the CD56 versus CD16 flow cytometry dot plots, we found four distinct NK sub-populations. These NK subtypes correspond to different NK phenotypes from secretory to cytolytic ones. There was no difference between total NK percentage of different disease forms. However, the total numbers decreased significantly both in survivors and non-survivors. Additionally, for the CD16-CD56+/++ phenotype, we observed different patterns, gradually decreasing in survivors and gradually increasing in those with fatal outcomes. Despite no difference in the proportion of the CD16-CD56++ NK cells in survivors vs. non-survivors, the main cytokine producers gradually decline during the study period in the survival group, underling the importance of adequate IFN production during the early stage of SARS-CoV-2 infection. Persistency in the circulation of CD56++ NK cells may have prognostic value in patients, with a fatal outcome. Total NK cells and the CD16+CD56+ NK subtypes exhibit significant decreasing trends across the moments for both survivors and non-survivors.


Subject(s)
COVID-19 , Killer Cells, Natural , CD56 Antigen/metabolism , COVID-19/immunology , Cytokines/metabolism , Humans , Killer Cells, Natural/classification , Receptors, IgG/metabolism , SARS-CoV-2
3.
Viral Immunol ; 35(9): 616-628, 2022 11.
Article in English | MEDLINE | ID: covidwho-2029002

ABSTRACT

Innate immunity, as the first line of defense of our immune system, plays a crucial role in defending against SARS-CoV-2 infection and also its immunopathogenesis. We aim to investigate the immune status of natural killer (NK) cells, natural killer T (NKT) cells, and NLRP3 gene expression in COVID-19 patient blood samples. The immunophenotype of NK cell subsets and NKT cells was detected by flow cytometry and the expression of NLRP3 gene assessed by reverse transcriptase real-time polymerase chain reaction in 44 COVID-19 patients and 20 healthy individuals. The percentage of most of NK cell subpopulation and NKT cells was significantly decreased in COVID-19 patients. The percentage of CD56dim CD16- NK cell subsets, and NLRP3 gene expression increased. The percentage of total NK cells, CD56+ CD16+ NK cells, and NLRP3 gene expression had acceptable sensitivity and specificity for assisting diagnosis of severe/critical COVID-19. O2 saturation% and lactate dehydrogenase levels showed valuable diagnostic value to identify critical cases. The declined NK and NKT cells in COVID-19 patients and enhanced NLRP3 gene expression were associated with disease severity. Total NK cells, CD56+ CD16+ NK cells, and NLRP3 gene expression might be used as meaningful indicators for assisting diagnosis of severe/critical COVID-19.


Subject(s)
COVID-19 , Humans , CD56 Antigen/metabolism , COVID-19/diagnosis , Killer Cells, Natural , L-Lactate Dehydrogenase/metabolism , Longitudinal Studies , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prospective Studies , SARS-CoV-2
4.
Cell Syst ; 13(8): 598-614.e6, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-1930802

ABSTRACT

The determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportunity for early intervention. We present a multiomic analysis using machine learning to characterize the genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic signals to cell-type-specific functions. We discover >1,000 risk genes across 19 cell types, which account for 77% of the SNP-based heritability for severe disease. Genetic risk is particularly focused within natural killer (NK) cells and T cells, placing the dysfunction of these cells upstream of severe disease. Mendelian randomization and single-cell profiling of human NK cells support the role of NK cells and further localize genetic risk to CD56bright NK cells, which are key cytokine producers during the innate immune response. Rare variant analysis confirms the enrichment of severe-disease-associated genetic variation within NK-cell risk genes. Our study provides insights into the pathogenesis of severe COVID-19 with potential therapeutic targets.


Subject(s)
COVID-19 , Adult , CD56 Antigen/analysis , CD56 Antigen/metabolism , COVID-19/genetics , Cytokines/metabolism , Genetic Predisposition to Disease , Humans , Killer Cells, Natural/chemistry , Killer Cells, Natural/metabolism , Polymorphism, Single Nucleotide
5.
Viruses ; 14(1)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1715736

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) infection induces elevated levels of inflammatory cytokines, which are mainly produced by the innate response to the virus. The role of NK cells, which are potent producers of IFN-γ and cytotoxicity, has not been sufficiently studied in the setting of SARS-CoV-2 infection. We confirmed a different distribution of NK cell subsets in hospitalized COVID-19 patients despite their NK cell deficiency. The impairment of this innate defense is mainly focused on the cytotoxic capacity of the CD56dim NK cells. On the one hand, we found an expansion of the CD56dimCD16neg NK subset, lower cytotoxic capacities, and high frequencies of inhibitory 2DL1 and 2DL1/S1 KIR receptors in COVID-19 patients. On the other hand, the depletion of CD56dimCD16dim/bright NK cell subsets, high cytotoxic capacities, and high frequencies of inhibitory 2DL1 KIR receptors were found in COVID-19 patients. In contrast, no differences in the distribution of CD56bright NK cell subsets were found in this study. These alterations in the distribution and phenotype of NK cells might enhance the impairment of this crucial innate line of defense during COVID-19 infection.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/metabolism , Lymphocyte Subsets/metabolism , Receptors, KIR/metabolism , Aged , CD56 Antigen/metabolism , COVID-19/blood , Female , GPI-Linked Proteins/metabolism , Hospitalization , Humans , Inflammation , Male , Middle Aged , Receptors, IgG/metabolism , SARS-CoV-2
6.
Nat Commun ; 12(1): 4854, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354099

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Systemic Inflammatory Response Syndrome/immunology , Transcriptome/immunology , Adolescent , CD56 Antigen/metabolism , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Child , Child, Preschool , Down-Regulation , Female , Humans , Infant , Infant, Newborn , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/genetics , Young Adult
7.
Mol Immunol ; 137: 221-227, 2021 09.
Article in English | MEDLINE | ID: covidwho-1313337

ABSTRACT

Natural Killer (NK) cells are considered the first line of defense against viral infections and tumors. Several factors affect NK cytotoxic activity rendering it dysfunctional and thereby impeding the ability to scavenge abnormal cells as a part of immune escaping mechanisms induced by different types of cancers. NK cells play a crucial role augmenting the activity of various types of anticancer mAb since dysfunctional NK cells are the main reason for the low response to these therapies. To this light, we examined the phenotypic characters of the circulating NK cells isolated from HCC patients compared to healthy controls. Then, dysfunctional NK cells, from HCC patients, were reactivated with cytokines cocktail and their cytotoxic activity with the anti-EGFR mAb "cetuximab" was investigated. This showed a downregulation of patients NK cells activating receptors (NKP30, NKP46, NKG2D and CD16) as well as CD56 and up-regulation of NKG2A inhibitory receptor. We also reported an increase in aberrant CD56- NK cells subset in peripheral blood of HCC patients compared to healthy controls. Thus, confirming the dysfunctionality of peripheral NK cells isolated from HCC patients. Cytokines re-activation of those NK cells lead to upregulation of NK activating receptors and downregulation of inhibitory receptor. Moreover, the percentage of aberrant CD56- NK cells subset was reduced. Here, we proved that advanced HCC patients have an increased percentage of more immature and noncytotoxic NK cell subsets in their peripheral blood, which might account for the low cytotoxicity noticed in those patients. A significant improvement in the cytotoxicity against HCC was noticed upon using reactivated NK cells combined with cetuximab. Therefore, this study highlights the potential recruitment of NK immune cells along with cetuximab to enhance cytotoxicity against HCC.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Hepatocellular/therapy , Cetuximab/therapeutic use , Cytokines/pharmacology , Killer Cells, Natural/immunology , Liver Neoplasms/therapy , CD56 Antigen/metabolism , Cell Line, Tumor , Humans , Lymphocyte Activation/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism
8.
Front Immunol ; 11: 1942, 2020.
Article in English | MEDLINE | ID: covidwho-976205

ABSTRACT

Severe cases of COVID-19 present with serious lung inflammation, acute respiratory distress syndrome and multiorgan damage. SARS-CoV-2 infection is associated with high cytokine levels, including interleukin-6 and certain subsets of immune cells, in particular, NK, distinguished according to the cell surface density of CD56. Cytokine levels are inversely correlated with lymphocyte count, therefore cytokine release syndrome may be an impediment to the adaptive immune response against SARS-CoV-2 infection. Canakinumab, a monoclonal antibody targeting IL-1ß is under investigation for the treatment of severe SAR-CoV-2 infection. An 85 year old male presenting in our hospital with COVID-19, whose condition was complicated by acute respiratory distress syndrome and cardiac and renal failure (with oliguria) after 25 days of hospitalization, was intubated and received canakinumab for compassionate use. On the next day, diuresis recovered and conditions improved: high IL-6 levels and NK cells expressing CD56 bright (associated with cytokine relase) were significantly reduced giving rise to NK CD56 dim . Patient died on day 58 with pulmonary bacterial superinfection and persistent SARS-CoV-2 positivity. In conclusion, canakinumab rescued a high risk, very elderly patient, from multiorgan damage complicating COVID-19. It may represent an useful treatment in severe cases.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/drug therapy , Aged, 80 and over , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , CD56 Antigen/metabolism , COVID-19 , Coronavirus Infections/virology , Fatal Outcome , Humans , Interleukin-1beta/antagonists & inhibitors , Interleukin-6/blood , Killer Cells, Natural/immunology , Male , Pandemics , Pneumonia, Viral/virology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Severity of Illness Index , COVID-19 Drug Treatment
9.
Sci Immunol ; 5(50)2020 08 21.
Article in English | MEDLINE | ID: covidwho-725061

ABSTRACT

Understanding innate immune responses in COVID-19 is important to decipher mechanisms of host responses and interpret disease pathogenesis. Natural killer (NK) cells are innate effector lymphocytes that respond to acute viral infections but might also contribute to immunopathology. Using 28-color flow cytometry, we here reveal strong NK cell activation across distinct subsets in peripheral blood of COVID-19 patients. This pattern was mirrored in scRNA-seq signatures of NK cells in bronchoalveolar lavage from COVID-19 patients. Unsupervised high-dimensional analysis of peripheral blood NK cells furthermore identified distinct NK cell immunotypes that were linked to disease severity. Hallmarks of these immunotypes were high expression of perforin, NKG2C, and Ksp37, reflecting increased presence of adaptive NK cells in circulation of patients with severe disease. Finally, arming of CD56bright NK cells was observed across COVID-19 disease states, driven by a defined protein-protein interaction network of inflammatory soluble factors. This study provides a detailed map of the NK cell activation landscape in COVID-19 disease.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Killer Cells, Natural/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Severity of Illness Index , Adaptive Immunity , CD56 Antigen/metabolism , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , Flow Cytometry/methods , Humans , Lymphocyte Activation , Male , Middle Aged , Pandemics , Phenotype , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Polymerase Chain Reaction , Prospective Studies , Protein Interaction Maps/immunology , Receptors, KIR/metabolism , SARS-CoV-2 , Serologic Tests , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL